Plasma-AssistedAtomic Layer Deposition of SiN_x

Sumit Agarwal¹

¹Colorado School of Mines, U.S.A.

The shrinking device dimensions in integrated circuits combined with the introduction of 3-D device architectures has createda need for novel atomic layer deposition (ALD) processes for a variety of materials including Si-based dielectrics such as SiN_x . Development of new ALD techniques that can meet the demands for semiconductormanufacturing requires an atomistic level understanding of the surface reaction processes. In our lab, we have pioneered the use of *in situ* optical diagnostic techniques including highly surface sensitive attenuated total reflection Fourier transform infrared spectroscopy and multi-wavelengthellipsometry to study the surface processes that occur during ALD.

In this presentation, I will discuss thelow-temperature plasma-assisted ALD of SiN_x films where one of the key challenges has been to grow conformal films in high-aspect-rationanostructures such that the sidewall structure and composition is the same asthe top surface. I will discuss the surface reactions that occur during ALD of SiN_x using chlorosilanes and aminosilanes as the Siprecursors with an NH₃ and N₂ plasma, respectively, asthe nitrogen source. The NH₃-plasma based processes show >95% conformality, but the wet-etch rate in dilute HF is much higher for thesidewalls compared to the planar surface. While N₂ plasma basedprocesses show a low wet-etch rate for both the sidewalls and the planarsurface, the conformality is ~50%. Based on these observations, we havedeveloped a new three-step ALD process for SiN_x growth usingSi₂Cl₆ followed by CH₃NH₂, and thenan N₂ plasma. I will show that in this three-step ALD processbecause nitrogen is supplied to the surface partially in a thermal stepfollowed by an N₂ plasma, the films are more conformal with asidewall wet etch rate that is intermediate between NH₃ and N₂plasma based ALD processes.

We would like to acknowledge Lam Research Corporation and the Lam Research Foundation for funding this work.