A Study on the Passivation Characteristics according to the RF-power Variable of Tunnel Oxide Layer Using N₂O Gas

Sehyeon Kim ¹, Sanguk Han ¹, Sooyoung Park ¹, Geonju Yoon ¹, Youngseok Lee ¹, Sangho Kim ¹, Seongho Jeon ¹
, Donggi Shin ¹, and Junsin Yi ¹

Sungkyunkwan Univ., Korea, Republic of

Recently, Silicon oxide layer for tunneling effect has been used in many fields including silicon solar cell. The tunnel oxide layer increases lifetime and iV_{oc} selectively electron transporting through tunneling and passivation. In this experiment, the tunnel oxide was deposited by PECVD(Plasma Enhanced Chemical Vapor Deposition) using N₂O, RF-power was varied to process the tunnel oxide. Deposition rate increased with increasing RF-power under substrate temperature 300°C, N₂0 50 sccm, 150 mTorr of working pressure. After a certain time, the thickness became constant because deposition rate decreased. C-V analysis shows more neutral charge than SiN_x which is positive charge. After that, the phosphorus doped a-Si layer deposited as the upper layer was annealed with N₂ gas, 850 °C, 1hour and H₂ (15% H₂/ Ar), 400°C 30min. After annealing, lifetime and iVoc were measured using Lifetime Tester(WCT-120), conditions were optimized in RF-power 200W, substrate temperature 300°C (lifetime 762 μ s, iVoc 733 mV). According to RF power increased, the content of oxide was increased while the content of nitrogen was decreased. This was related to the increased of lifetime.