Research in Thermal Area Selective Atomic Layer Deposition and Atomic Layer Etching for Advanced Device Patterning

Gregory Parsons¹ ¹North Carolina State University, U.S.A.

Area-selective Atomic Layer Deposition (AS-ALD) is being exploitedby industrial and academic fields as promising mean for enabling the continuousdown scaling of transistor devices. Thermal TiO₂ ALD using TiCl₄and H₂O demonstrates surface selectivity between hydroxyl(Si-OH) andhydrogen terminated(Si-H) silicon surfaces. However, when a critical number of TiO₂ALD cycle is exceeded, significant amount of TiO₂ nuclei form onSi-H, which results in loss of the surface-dependent selectivity. We recentlyreported a thermal TiO₂ atomic layer etch (ALE) process consisting thermodynamically favorable sequential reactions with WF₆ and BCl₃. To improve the surface-dependent selectivityof TiO₂, we investigated TiO₂ ALD with periodic etch-backsteps using the TiO₂ ALE process, thereby allowing > 5 nm of TiO₂selective deposition on Si-OH vs Si-H surfaces, as confirmed by transmissionelectron microscopy (TEM) and other techniques. Beyond metal oxide, we also discovered a process for thermal ALE oftungsten metal using O₂ and WF₆., and confirmed thereaction mechanisms using thermodynamic modeling. This presentation will focuson inherent differences in ALD precursor interactions with different substratematerials, and how selectivity in ALD and ALE surface reactions can be combined and coupled to advance the challenges of area-selective deposition.