Effect of deposition temperature on the ferroelectric properties of Y-doped HfO₂ thin film prepared by medium-frequency reactive magnetron co-sputtering

Yu Zhang¹, Jun Xu¹, Da-yu Zhou¹, Hang-hang Wang¹, Wen-qi Lu¹, Chi-Kyu Choi², Jeong-Yong Lee³, and Sung-Kyu Kim

¹Dalian University of Technology, China (P.R.C) ²Jeju National University, Korea, Republic of ³Korea Advanced Institute of Science and Technology, Korea, Republic of

The crystal structureas well as electrical properties of sputtering deposited Y-doped HfO_2 thin films were investigated. Yttrium was incorporated into the HfO_2 layer by co-sputtering of Y and Hf metal targets under argon/oxygen atmosphere. The 10 nm-thick HfO_2 thin film with 1.5 at.% yttrium-doping deposited at 200 ? and annealed at 850 ? for 40 s in nitrogen ambient shows excellent ferro-electricity with a large remnant polarization (Pr~20µC/cm²) and low leakage current density (about 10⁻⁶)

A/cm²at 1MV/cm). The crystal structure and electrical properties of Y-doped HfO₂ thin films exhibit strong temperature dependence. We observed an enhanced suppression of ferroelectric phase (orthorhombic phase) fraction in favor of the para-electric phase (monoclinic phase) with increasing deposition temperature by the combination of grazing incidence X-ray diffraction (GIXRD) and high resolution transmission electron microscopy (HRTEM). A correlation of decreasing P_r and larger leakage current densities with the increasing deposition temperature in TiN/Y-doped HfO₂/Si stacks are shown in polarization and current density characteristics. The origin of the degradation of the ferro-electricity of Y-doped HfO₂ films deposited at higher temperature was attributed to the formation of m-phase which was unfavorable for inducing transition to the FE o-phase during after wardannealing.