Layer-by-layer oxidation of MoS2 using oxygen plasma treatment

Sojung Kang¹, Junyoung Kwon¹, Jaehwan Jeong¹, Jianwu Shi², and Gwan-Hyoung Lee¹

¹Yonsei Univ., Korea, Republic of ²Henan Univ., China (P.R.C)

After graphene has emerged as future materials, other two-dimensional(2D) materials such as hBN, BP, MoS_2 and WSe_2 have been studied. Among (semi-)metallic, insulating and semiconducting 2D building blocks, transition metal dichalcogendie (TMD) materials have attracted many attention due to their unique properties. 2D semiconductors are promising materials for future device owing to their superior properties such as high mobilities, transparency, and flexibility. TMDs have different band structure depending on the number of layers. The most representative change of band structure of TMD is indirect- to direct bandgap transition depending on bulk to monolayer. Because of these properties, the control of the number of layer is very important issue for the optical and electrical properties of them. In this research, our customized O_2 plasma system is used to either thin down or oxidize the layer to acquire monolayer MoS_2 . Especially with oxidation mode, the top layer of MoS_2 was oxidized to MoO_x leaving the bottom layer intact, resulting in the high photoluminescence intensity corresponding to that of monolayer MoS_2 . Our work provides an effective way for the formation of monolayer MoS_2 from a multilayer flake, which is essential for fundamental studies and engineering of 2D materials.