SiO₂ etch characteristics and environmental impact of Ar/C_3F_6O and $Ar/C_4F_8/O_2$

Soo Gang Kim¹, Kyung Che Yang¹, Da In Sung¹, Ye Ji Shin¹, Hyun Woo Tak¹, Jun Ki Jang¹, and Geun Young

Yeom¹

¹Sungkyunkwan Univ., Korea, Republic of

Perfluorocarbon (PFC) gases are generally used for the nanoscale etching in the semiconductor process. However, when PFC gases are released into the air, they are influential to environment due to their long life time and global warming effect. So in this study, SiO₂ etch characteristics and global warming effects of C_3F_6O gas chemistry with low global warming potential (GWP) were studied. And the results of C_3F_6O gas chemistry were compared with C_4F_8 gas chemistry which is one of the gases mainly used in the semiconductor processing. With Ar/C₃F₆O, the etch rates and etch selectivities of SiO₂ over amorphous carbon layer (ACL) as the hardmask were compared with Ar/C₄ $F_8/O2$. Also using scanning electron microscope (SEM), the etch profiles such as bowing, narrowing, and necking effects were compared. The plasma characteristics during the etching with Ar/C₃F₆O and Ar/C₄F₈/O₂ gas mixture were investigated using an optical emission spectroscopy (OES). And the surface chemistries of the etched SiO₂ were observed using x-ray photo electron spectroscopy (XPS). The global warming effects were evaluated by calculating the million metric ton carbon equivalents (MMTCEs) from the volumetric concentrations of emitted by-product species and process gases using fourier transform infrared (FT-IR).

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP) and the Ministry of Trade, Industry & Energy(MOTIE) of the Republic of Korea (No. 20172010105910).