Modeling on 2D Rapid Surface Oxidation by 1D Scanning Loop-type of Induction Thermal Plasmas

Yasunori Tanaka¹, Takumi Tsuchiya¹, Atsushi Fujita¹, Tatsuo Ishijima¹, Yoshihiko Uesugi¹, Tetsuya Yukimoto², and

Hiroshi Kawaura ² ¹Kanazawa Univ., Japan ²CV Research Inc., Japan

Inductively coupled thermal plasma (ICTP) is widely adopted for various materials processing. However, the conventional cylindrical ICTP is hardly adequate to large-area materials processing. For the purpose of large-area surface modification using thermal plasmas, we developed an unique ICTP, i.e. a loop type of ICTP (loop-ICTP). It is formed in a loop quartz tube connected with a rectangular quartz vessel. A substrate is placed on the substrate holder located in the qurtz vessel. Then, a part of loop-ICTP is formed directly lying on the substrate with a linear shape. In addition, scanning the substrate against the linear theraml plasma provides 2D rapid surface oxidation of the substrate.

In this paper, numerical modeling was made on two-dimensional rapid surface oxidation for a Si substrate by scanning loop-type of Ar-O2 loop induction thermal plasma. The model is based on the 3D energy conservation equation to determine the substrate temperature, and the Deal-Grove model to obtain temporal variation in the thickness of oxide layer. As a result, almost uniform oxide layer can be obtained only by one scan of the 2-inch Si(100) substrate for one minute with oxidation rate of 100 nm/min.