N-type doping of tungsten diselenide by oxygen plasma treatment

Hyeongjun Kim ¹ and Jin-Hong Park ¹
¹Sungkyunkwan Univ., Korea, Republic of

Transition metal dichalcogenides (TMDs), such asmolybdenum disulfide (MoS $_2$), molybdenum diselenide(MoS $_2$), tungsten diselenide (WS $_2$), rhenium disulfide (ReS $_2$), are promising materialsfor flexible, transparent electronics because of their electrical, optical,mechanical properties. Transition fromindirect to direct bandgap occurs when TMDs scale goes bulk to monolayer, soTMDs like MoS $_2$ and WS $_2$ indicates excellent performance as optoelectronic device. Becauseion-implantation can't apply for TMDs materials, many doping method research,including in-situ, charge transfer and dipole moment doping, are currentlystudied. One of doping methods is using plasma treatment. There is p-dopingthrough O $_2$, CF $_4$, CHF $_3$ plasma treatment on MoS $_2$. However, in case of WS $_2$, no electrical analysis ofplasma-induced doping is studied yet.

In this paper, we demonstrate the effect of O_2 plasma treatment on WSe₂with I-V measurement. First, we use reactive ion etching (RIE) for O_2 plasma treatment on WSe₂ flake. This work is carriedout in 10 seconds. The plasma power is set to 20W. Next, we make WSe₂TFT device for measurement. Pristine WSe₂ TFT indicates p-type or ambipolar transistor. However, electrical analysis indicates plasma treated WSe₂TFT as n-type transistor.

This experiment shows on-currents ($10^{-7} \sim 10^{-6} \, A$), off-currents($10^{-10} \sim 10^{-9} A$), threshold voltage (-20 ~ -10V)