Top-gatedMoS₂ field-effect transistor with ultra-thin HfO₂ gate dielectric formedby Hf-seeded atomic layer deposition

Hoijoon Kim ¹, Taejin Park ¹, Seongjae Park ¹, Mirine Leem ¹, Wonsik Ahn ¹, Seong-Jun Jeong ², Seongjun Park ²,

Yunseok Kim ¹, and Hyongsub Kim ¹

¹Sungkyunkwan University, Korea, Republic of

²Samsung Advanced Institute of Technology, Korea, Republic of

The fabrication of high-performance top-gated MoS_2 field-effect transistors (FETs) requires uniform deposition of an ultra-thin gatedielectric film with a high dielectric constant (high-k) on the MoS_2 channel layer. However, the chemicallyinert basal planes of two-dimensional MoS_2 prevent sufficient chemisorption fatomic layer deposition (ALD) precursors needed for the uniform high-k film deposition. As one of approachesfor functionalization of the MoS_2 surface, various seeding layers havebeen introduced prior to the high-kALD [1]. In this presentation, we fabricated and evaluated the top-gated MoS_2 FETs with ultra-thin HfO_2 gate dielectric films without pin-holes,which were formed by ALD at 250 °C after introducing an e-beam evaporated Hfseed layer. The surface coverage of the HfO_2 films on themechanically-exfoliated MoS_2 films was investigated using variousmicroscopic tools. In addition, the possible side effects of the Hf seed layeron MoS_2 were examined. Lastly, the top-gated MoS_2 FETs withan Hf-seeded HfO_2 film (~5 nm) were fabricated and their characteristics were compared with those with a thick HfO_2 film (~30nm) without a seeding layer.