Stability of High-Performance MultilayerMoS₂ Field-Effect Transistor improved by O₂ Plasma Pretreatment and Al₂ O₃Encapsulation

NA LIU¹, Soo Ho Choo¹, Jeong Hun Kim¹, Naqi Siddiqi¹, Quang Trung Nguyen¹, and Sunkook Kim¹ ¹Sungkyunkwan University, Korea, Republic of

In this study, wedemonstrated a method for improving the stability of multi-layered MoS_2 field-effect transistors (FETs) by O_2 plasma treatment and Al_2O_3 encapsulation. The MoS_2 FETs were exposed to O_2 plasma for 30 s prior to Al_2O_3 passivation tocarry out high electrical performance and relatively small hysteresis. Between MoS_2 and the Al_2O_3 passivation layer, there is a MoO_x layer formed during theplasma treatment. This MoO_x interlayer prevents the generation of excesselectron carriers in the channel due to Al_2O_3 encapsulation which minimizes theshift of threshold voltage (V_{th}). However, plasma treatment for a long time (90and 120 s) was found to introduce excess oxygen traps into the MoO_x interlayer, resulting in a persisted hysteresis and a high off-current leakage. The stable MoS_2 FETs were also suffered from the tests of the gate bias stress underdifferent conditions. The MoS_2 FETs showed negligible degradation ofperformance under a positive gate bias stress, positive gate bias illuminationstress, and negative gate bias stress, but a large negative shift of V_{th} wasobserved under a negative gate bias illumination stress, which is suggestedbecause of the presence of sulfur vacancy. This easy approach can be applied toother transition metal dichalcogenides and the high performing and hysteresis-free MoS_2 FETs could open up new opportunities for future electronics.

This research wassupported by the Korea Research Fellowship program (KRF) funded by the Ministryof Science, ICT and Future Planning through the National Research Foundation ofKorea (2017H1D3A1A02014116) and the Basic Science Research Program through theNational Research Foundation of Korea (NRF) funded by the Ministry of Education(2017R1D1A1B03035315).