Electrical Performance of Al₂O₃-Encapsulated Multilayer MoS₂ Thin-Film Transistor with Different Temperature Environments

Seok Hwan Jeong ¹, Na Liu ¹, Heekyeong Park ¹, and Sunkook Kim ¹ ¹Sungkyunkwan Univ., Korea, Republic of

Since graphene was found, two-dimensional (2D) materials have been widely interested n various research area. Although it has good optical, mechanical, and electrical characteristics, graphene was not suitable for an active channel material offield-effect transistors because of its absence of a band gap. To realize aband gap in graphene, many researchers were studying, but these efforts broughtabout the additional process complexity and reduction of mobility. 2Dtransition metal dichalcogenides (TMDs)-based thin-film transistors (TFTs) werean excellent replacement for conventional transistors. Among TMDs materials, molybdenum disulfide (MoS_2) TFTs have conspicuous advantages such ashigh mobility, a high on/off current (I_{on}/I_{off}) ratio, mechanically strengthen, good flexible property and a large band gap.

We reported that atomic-layer-deposited (ALD) aluminum oxide (Al_2O_3) for passivation layer affected the multilayer MoS_2 TFTs. Electrical performanceswere measured in different temperature from 298 K to 380 K. Al_2O_3 layers for passivation were uniformly deposited onto the MoS_2 surfacewith ultraviolet-ozone (UV/O_3) treatment. This passivation layer hasthree major effects. First, decreases of the hysteresis in transfer curves. Second, enhancement of saturation current level in output curves. Third, improvement of effective mobility about 40.4% Through the temperature-dependent measurements, intrinsic carrier mobility was calculated by using the Y-function method. With this result, we suggest that the dominant mechanism of carrier transport is thermionic emission. Because Al_2O_3 -encapsulated MoS_2 devices had a high Schottky barrier. This barrier was indicated between the source/drain electrodes and an active MoS_2 channel. Additionally, the proposed approach at relatively high temperatures can be employed torealize stable and reproducible electronic devices for robust and practical applications.