Noble Au-functionalized WS2 nanosheetsgas sensors

Jae-Hun Kim¹, Jae-Hyoung Lee¹, Jin-Young Kim¹, and Sang Sub Kim¹ ¹Inha Univ., Korea, Republic of

 WS_2 is a promising 2D materialfor sensing applications thanks to high surface area and excellent electrical properties. However for sufficient sensing applications its sensitivity needs to be improved more. A good strategy for that purpose is to functionalize with noblemetal nanoparticles (NPs). NPs can make additional charge depletion zone in WS_2 nanosheets, thereby amplifying their resistance modulation during interaction with gas molecules. Furthermore, NPs can provide a spillover effect; facilitating adsorption, dissociation, and transfer of target gases to WS_2 nanosheets surface. This can lead to improved sensitivity towards a specificgas. In this study, we functionalized noble Au NPs on the surfaces of WS_2 nanosheets. A solution containing WS_2 nanosheets was drop cast onthe SiO₂ wafer, and then Au NPs were prepared by using UVirradiation. Eariler studies have confirmed that Au NPs exhibit excellent selective behavior to CO gas. Therefore, the performance of the Au-functionalizedWS₂ sensor was verified by measuring CO in comparison to various reducing gases such as C₆H₆ and C₇H₈.In the study, the 2D sensors were systematically investigated in terms of gas pose, selectivity and power consumption.