Characterization of defects in 2D materials with tip enhanced Raman scattering

Byeong Geun Jeong ¹, Chanwoo Lee ¹, Seung Mi Lee ², and Mun Seok Jeong ¹ ¹Sungkyunkwan University, Korea, Republic of ²Korea Research Institute of Standards and Science , Korea, Republic of

Recently,2 dimensional(2D) nanomaterials such as graphene, boron nitride, and layeredtransition-metal dichalcogenide (TMdC) materials with the chemical structureMX2 (M = Mo, W, Ti, V, Ta, Hf, Pt and X = S, Se, Te) have attracted considerable interest in the fundamental sciences and applications. In this presentation, analysis of 2D nanomaterials with Tip enhanced Raman scattering (TERS)will be provided. TERS is a unique tool for investigating Raman scatteringmapping with nanometer spatial resolution beyond optical diffraction limit. Using representative tips fabricated under the optimal etching condition, we demonstrate the TERS experiment of tungsten disulfide (WS₂) monolayergrown by a chemical vapor deposition method with a spatial resolution of ~40nm. Monolayer WS₂ has been especially known for its highphotoluminescence(PL) quantum yield, which is greater than that of monolayerMoS₂. However, the conventional PL and Raman spectroscopy have alimit to analyze nanoscale structures such as local disorders, grainboundaries, dopants, and edges which affect to the optical properties of WS₂. Here, we conduct systematic studies to investigate monolayer WS₂ by using TERS. As measuring monolayer WS₂ by a scanning tunneling microscope and scanning electron microscopeto compare with TERS images.