Study on the ITO work function and hole injection barrier insilicon heterojunction solar cells

Seongho Jeon¹, Woong-Kyo Oh¹, Youngseok Lee¹, Donggi Shin¹, Geonju Yoon¹, Sehyeon Kim¹, and Junsin

¹Sungkyunkwan University, Korea, Republic of

The change in work function and electron/holeinjection barrier is related to the bandalignment. The high Φ_{ITO} are used to inject holes in front contact barrier ITO/a-Si:H (p) of HIT solarcell, hence as high as possible values of work functions are desired. we focused on the front contact barrier height of HIT (ITO/a-Si:H(p)/a-Si:H(i)/c-Si(n)) solar cell. The ITO films with low resistivity of were deposited bypulsed DC magnetron sputtering as a function of substratetemperature (T_s). There was improvement in Φ_{ITO} from 4.15 to 4.30 eV and variation of holeinjection barrier from for the HITsolar cell. The results show that the highvalues of Φ_{ITO} and the delta hole injection barrier at the front interface of ITO/p-layer lead to an increase of opencircuit voltage (V_{oc}), fill factor (FF) and efficiency (η).

Yi¹