Ambientannealing influences upon optical, structural and electrical properties of thermal evaporated MoO_x thin films for high efficiency crystallineSi solar cells applications.

Kumar Mallem¹, Yong Jun Kim¹, Shahzada Qamar Hussain¹, Subhajit Dutta¹, Minkyu Ju¹, Youngkuk Kim¹, Young-Hyun Cho¹, Eun-chel Cho¹, and Junsin Yi¹ ¹Sungkyunkwan University, Korea, Republic of

Molybdenum oxide (MoOx) thin films were prepared on the silicon (Si) and glass substrate by thermal evaporation. MoO_x /Sipost deposition annealing (PDA) was carried out at Ar, O_2 , H_2 and N_2 ambient annealing. The optical, structural, composition and electrical properties of MoO_x thin films were modified by varying the atmospheric ambient annealing and temperature. Optical bandgap (E_g), transmittance and reflectance of the MoO_x film were varied with thickness and ambient annealing. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-rays photoelectron spectroscopy(XPS) analysis confirmed the crystal linity and chemical composition, oxygendefective states of the MoO_x films. The Ar ambient annealing controlled of MoO_x stoichiometric and control Mo cations binds

to Mo⁺⁶states as compared with O₂, H₂ and N₂ ambientannealing. The transient photo-conductance decay measurement confirmed thelifetime and implied voltage (V_{oc}) of the Si changes from 5 to 125µs and 580 to 660 mV by deposit 15 nm thick MoO_x films. The currentdensity (J_{sc}) and fill factor (FF) of Si was increased by deposing the MoO_x films. These results motivating that MoO_x as anemergenceing material to utilized in the Si solar cell for high archiving thehigh efficiency solar cell applications.

This work was supported by the New & RenewableEnergy Technology Development Program of the Korea Institute of EnergyTechnology Evaluation and Planning (KETEP) grant funded by the Korea governmentMinistry of Trade, Industry & Energy. (No. 20173010012940).